

ICF Consulting / Laboratory Data Consultants

Environmental Services Assistance Team, Region 9 1337 South 46th Street, Building 201, Richmond, CA 94804-4698 Phone: (510) 412-2300 Fax: (510) 412-2304

MEMORANDUM

TO:

Chris Lichens, Remedial Project Manager

Site Cleanup Section 4, SFD-7-4

THROUGH:

Rose Fong, ESAT Task Order Manager (TOM)

Quality Assurance (QA) Program, MTS-3

FROM:

Doug Lindelof, Data Review Task Manager

Region 9 Environmental Services Assistance Team (ESAT)

ESAT Contract No.: EP-W-06-041

Technical Direction Form No.: 00105001

DATE:

June 29, 2006

SUBJECT:

Review of Analytical Data, Tier 3

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

Site:

Omega Chem OU2

Site Account No.:

09 BC LA02

CERCLIS ID No.:

CAD042245001

Case No.:

32989

SDG No.:

MY1C21 Ceimic Corporation (CEIMIC)

Laboratory: Analysis:

CLP Dissolved Metals By ICP-AES

Samples:

16 Groundwater Samples (see Case Summary)

Collection Date:

June 22, 23, and 24, 2004

Reviewer:

Stan Kott, ESAT/Laboratory Data Consultants

This report has been reviewed by the EPA TOM for the ESAT contract, whose signature appears above.

If there are any questions, please contact Rose Fong (QA Program/EPA) at (415) 972-3812.

Attachment

001

Jennie Han-Liu, CLP PO USEPA Region 1

Steve Remaley, CLP PO USEPA Region 9

CLP PO: [] FYI [X] Action

SAMPLING ISSUES: [] Yes [X] No

00105001-6723/32989/ MY1C21RPT

Data Validation Report

Case No.: 32989 SDG No.: MY1C21

Site: Omega Chem OU2

Laboratory: Ceimic Corporation (CEIMIC)

Reviewer: Stan Kott, ESAT/LDC

Date: June 29, 2006

I. CASE SUMMARY

Sample Information

Samples: MY1C21 through MY1C28 and MY1C30 through

MY1C37

Concentration and Matrix: Low Concentration Groundwater

Analysis: CLP Dissolved Metals By ICP-AES

SOW: ILM05.3 and Modification Reference Number

AES060304.0

Collection Date: June 22, 23, and 24, 2004

Preparation Date: June 24, 2004

Preparation Date: July 8, 2004

Analysis Date: July 8 and 9, 2004

Field QC

Field Blanks (FB): Not Provided Equipment Blanks (EB): Not Provided Background Samples (BG): Not Provided

Field Duplicates (D1): MY1C26 and MY1C27

Laboratory OC

Method Blanks & Associated Samples: Preparation Blank-Water (PBW) and samples

listed above

Matrix Spike: MY1C34S Duplicates: MY1C34D

ICP Serial Dilution: MY1C34L

Analysis: CLP Dissolved Metals By ICP-AES

Sample Preparation

Analyte and Digestion Date
ICP-AES Metals July 8, 2004

Percent Solids Not Applicable

Analysis Date
July 8 and 9, 2004
Not Applicable

CLP PO Action

The non-detected results for silver in all samples are rejected (R) since less than 50% of the silver in the aqueous laboratory control sample (LCS) was recovered.

Sampling Issues

None.

Additional Comments

Note that Ceimic Corporation laboratory is no longer in operation.

The samples in this SDG were analyzed for select metals (aluminum, calcium, iron, magnesium, potassium, and sodium) plus boron and silicon by ICP-AES under Modified Analysis Request (MAR), Modification Reference Number AES060304.0.

The laboratory was instructed by Region 9 to report elements scheduled for ICP-MS analysis in SDG MY1C22 in this SDG due to suspected matrix interferences and carryovers that occurred during ICP-MS analysis. The laboratory also notes that only the elements specified in Modification Reference Number AES060304.0 were included in the matrix spike sample. (See Comment E and attached SDG Narrative.)

All samples were analyzed at a 3-fold dilution due to silicon concentrations that exceeded the instrument's linear range. No adverse effect on data quality is expected.

All method requirements specified in the EPA Contract Laboratory Program (CLP) Inorganic Statement of Work (SOW), except as noted, have been met.

Analytical results are listed in Table 1A with qualifications. Definitions of data qualifiers used in Table 1A are listed in Table 1B.

This report was prepared in accordance with the following documents:

- Region 9 Standard Operating Procedure 906, Guidelines for Data Review of Contract Laboratory Program Analytical Services (CLPAS) Inorganic Data Packages;
- Request for Quote for Modified Analysis (SOW flexibility clause), Tracking Number: 1103.0, Modification Reference Number: AES060304.0, June 9, 2004;
- USEPA Contract Laboratory Program Statement of Work For Inorganic Analysis Multi-Media, Multi-Concentration ILM05.3, March 2004; and
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

II. VALIDATION SUMMARY

The data were evaluated based on the following parameters:

	Parameter	<u>Acceptable</u>	Comment
1.	Data Completeness	Yes	
2.	Sample Preservation and Holding Times	Yes	
3.	Calibration	Yes	
	a. Initial		
	b. Initial and Continuing Calibration Verifica	ation	
	c. CRQL Check Standard (CRI)		
4.	Blanks	Yes	C
5.	ICP Interference Check Sample (ICS)	Yes	
6.	Laboratory Control Sample (LCS)	No	Α
7.	Duplicate Sample Analysis	Yes	
8.	Matrix Spike Sample Analysis	No	E
9.	ICP Serial Dilution Analysis	No	D
10.	ICP-MS Internal Standards	N/A	
11.	Field Duplicate Sample Analysis	Yes	
12.	Sample Quantitation	Yes	В
13.	Overall Assessment	Yes	

N/A = Not Applicable

III. VALIDITY AND COMMENTS

- A. The following non-detected results are rejected and flagged "R" in Table 1A because an aqueous laboratory control sample (LCS) recovery result is outside method QC limits.
 - Silver in all samples

The percent recovery for silver is presented below and is based on an ideal recovery of 100%.

Analyte	% Recovery
Silver	10

The results reported for silver in all samples are below the method detection limit (MDL) and are considered unacceptable because less than 50% of silver in the aqueous LCS was recovered. The low LCS recovery indicates an analytical deficiency and false negatives may exist.

The purpose of the LCS is to monitor the overall performance of all steps in the analysis under ideal conditions, including sample preparation.

B. Results above the MDL but below the contract required quantitation limit (CRQL) (denoted with an "L" qualifier) are estimated and flagged "J" in Table 1A.

Results above the MDL but below the CRQL are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of quantitation.

- C. The following results are reported as non-detected (U) in Table 1A due to low level preparation blank (PBW) contamination.
 - Aluminum in samples MY1C23, MY1C24, MY1C27, MY1C35, and MY1C37
 - Manganese in samples MY1C24, MY1C25, and MY1C28

Aluminum (49.6 μ g/L) and manganese (2.1 μ g/L) were found in preparation blank PBW. These results are greater than their respective MDLs but less than the respective CRQLs. Sample results greater than or equal to the MDL but less than the CRQL are reported as non-detected (U) at the respective CRQL.

A preparation blank is an analytical control that contains distilled, deionized water, or baked sand for solid matrices, and reagents, which is carried through the entire analytical procedure. The preparation blank is used to determine the level of contamination introduced by the laboratory during preparation and analysis.

- D. The following results are estimated and flagged "J" in Table 1A because an ICP serial dilution result is outside method QC limits.
 - Potassium in all samples

The percent difference for the ICP serial dilution analysis of sample MY1C34L did not meet the 10% criterion for potassium as shown below.

Analyte	% Difference
Potassium	-32

Results reported for potassium in all samples are considered quantitatively uncertain. Chemical and physical interferences may exist due to sample matrix effects. The result for the diluted sample was lower than the original. Therefore, the reported potassium sample results may be biased high.

A five-fold dilution of the laboratory QC sample is performed in association with the ICP procedure to indicate whether interference exists due to sample matrix effects. If the analyte concentration is sufficiently high (minimally a factor of 50 above the MDL in the original sample), the five fold serial dilution must agree within 10% of the original results after correction for dilution.

E. Inadequate matrix-specific laboratory QC was performed for this SDG. The Inorganic SOW states that at least one matrix spike sample analysis shall be performed on each group of samples of a similar matrix type and concentration or for each SDG. The laboratory performed one matrix spike sample analysis. However, antimony, arsenic, barium, beryllium cadmium, chromium, cobalt, copper, lead, manganese, nickel, selenium, silver, thallium, vanadium, and zinc were not included in the matrix spike sample. The effect on data quality is not known.

ANALYTICAL RESULTS

Table 1A

Case No.: 32989

SDG No.: MY1C21

Site: OMEGA RECOVERY SERV. OU2 Lab: CEIMIC CORPORATION (CEIMIC)

Reviewer : Stan Kott, ESAT/LDC

Date: June 29, 2006

QUALIFIED DATA
Concentration in ug/L

Analysis Type: Low Concentration Groundwater Samples

For Dissolved Metals By ICP-AES

Station Location:	18 19 20						20	21	22			23			24						
Sample ID :	MY1C21 MY1C22 M					MY1C23 MY1C24					MY1C25					MY1C26 D1			MY1C27 D1		
Collection Date :	6/22/2004 6/22/2004 6					6/22/2004 6/22/2004						6/22/2004		6/23/2004			6/23/2004				
·				L						_											
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	200U			∠ 200U			200U		С	200U		C.	200U			200U			200U		С
ANTIMONY	60.0Ú	ŦĴ.	Ε	60.0Ü	j.	⊸ E.	60.0U	J	Ė	60.0U	J	E	60.0U	Ĵ	[E	60.0U	J	E	60.0U	Ĵ	E
ARSENIC	9.7L	J	BE	8.5L	J	BE	10.1	J	Ε	8.6L	J	BE	8.8L	J	BE	5.2L	J	BE	8.0L	J	BE
BARIUM	56.4L	j	BE	61.5L	J	BE	40.6L	J	BE	30.4L	J	BE	27.8L	J	BE	82.1L	J _	BE	80.3L	J	BE
BERYLLIUM	5.0U	J	E	5.0U	J	E	5.0U	J	E	5.0U	. J	Е	5.0U	J	Ε	5.0U	J	E	5.0U	J	E
BORON	314L	J	В	286L	J	В	267L	J	В	318L	J	В	339L	J	В	375L	. J	В	378L	J	В
CADMIUM	5.0U	Ĵ	E	5.0U	J	Е	5.0U	J	Е	5.0U	J	E	5.0U	J	Ε	5.0U	J	Е	5.0U	J	Ε
CALCIUM	167000		1 7	182000		1	176000			215000	F 74 78		187000			159000	111		154000		
CHROMIUM	3.5L	J	BE	7.9L	J	BE	84.1	J	Ε	6.6L	J	BE	9.4L	J	BE	53.0	J	E	51.1	J	Е
COBALT	50.0U	J	Ε	50.0U	J	E	50.0U	_ J _	Е	50.0U	J	E	50.0U	J	E	50.0U	J	E	50.0U	J	E
COPPER	25.0U	j	Ε	25.0U	J	Ε	25.0U	J	Ε	25.0U	J	Ε	1.5L	J	BE	1.2L	J	BE	25.0U	· J	E
IRON	100U			100U			100U	- 1.		32.5L	J	В	100U			100U			39.0L	·J	В
LEAD	10.0U	J	Ε	10.0U	J	Е	10.0U	J	Ε	10.0U	J	E	10.0U	J	E	10.0U	J	Ε	10.0U	J	E
MAGNESIUM	48000			49900	i .	4	43000			49700			48500-			50500			49000	******	
MANGANESE	15.0U	J	Ε	.15.0U	J	Ε	15.0U	J	E	15.0U	J	CE	15.0U	J	CE	15.0U			15.0U	J	Е
NICKEL	40.0U	J	E	40.0U	رل	Ė	40.0U	J″	Ε	40.0U	J	E	40.0U	. J	E	40.0U	J	E	40.0U	J	E
POTASSIUM	2450L	J	BD	2950L	J	BD	3450L	J	BD	5390	J	D	5010	J	D	2370L	J	BD	2250L	J	BD
SELENIUM	35.0U	J	E	9.7L	J	BE	15.0L	J	BE	35.0U	J	E	9.4L	J	BE :	35.0U	ز	BE	5.9L	Ĵ	BE
SILICON	17600			15200			12500		, _	11600			12300			19900		<u>.</u>	19300		
SILVER	10.0U	Ŗ	ΑE	10.0U	R	ÁΕ	10.0U	R	ΑE	10.00	R	AE	10.0U	R	ΑE	10.0U	R	ΑĖ	10.00	R	ΑE
SODIUM .	95000			90400			124000			111000			129000			88700			85400		
THALLIUM	11.9L	J	BE	25.0U	J	E	13.8L	J	BE	10.3L	J	BE	13.0L	J	BE	12.4Ľ	J	BE	7.3L	J	BE
VANADIUM	· 1.7L	J ·	BE	1.8L	J	BE	50.0U	J	E	50.0U	J	Ε	50.0U	J	Е	3.7L	J	BE	3.5L	J	BE
ZINC	60.0U	J	E	60.0U	J,	Ë	60.0U	J	Ê	37.3L	J	BE	60.0U	, J-	Ŧ.E.	60.0Ú	J	Ε·	60.0U	J	E

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

CRQL - Contract Required Quantitation Limit

ANALYTICAL RESULTS

Table 1A

Case No.: 32989

SDG No.: MY1C21

Site: OMEGA RECOVERY SERV. OU2 Lab: CEIMIC CORPORATION (CEIMIC)

Reviewer: Stan Kott, ESAT/LDC

Date: June 29, 2006

QUALIFIED DATA Concentration in ug/L Analysis Type: Low Concentration Groundwater Samples

For Dissolved Metals By ICP-AES

Station Location :	25		,	26			27			28			30			31			32		
Sample ID :	MY1C28 MY1C30 M					MY1C31 MY1C32						MY1C33			MY1C34			MY1C35			
Collection Date :	6/23/2004 6/23/2004 6				6/23/2004			6/23/2004			6/23/2004			6/24/2004			6/24/2004				
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	200U			200U			200U			· 200U	•		200U			200U			200U		С
ANTIMONY	60.0U	J.,	Ε	60.0U	J	E	60.0U	j	E	~ 60.0U	J	E	60.0U	, ل	Ε	60.0U	J	Ε	60.0U	J	E:
ARSENIC	6.4L	J	BE	7.2L	J	BE	11.0	J	E	12.2	J	E	6.6L	J	BE	8.8L	J	BE	7.3L	J	BE
BARIUM	44.4L	j	BE	58.3L	J	BE	29.2L	J	BE	29.8L	J	BE	97.5L	J	BE	24.5L	Ĵ	BE	19.6L	J	BE
BERYLLIUM	5.0U	J	E	5.0U	J	E	5.0U	J	Ε	5.0U	J	Ε	5.0U	J	E	5.0∪	J	Ε	5.0U	J	Е
BORON	273L	J	В	394L	J	В	297L	J	В	295L	J	В	1000U		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	420L	J	В	597L	J	В
CADMIUM	5.0U	J	Ε	5.0U	. J	Ε	5.0U	J	Ε	5.0U	J	E	5.0U	J	E	5.0∪	J	Ε	5.0U	J	E
CALCIUM	126000			206000			210000			206000			132000			257000			233000	*	
CHROMIUM	78.8	J	E	174	J	E	8.5L	J	BE	6.0L	J	BE	· 2.0L	J	BE	2.2L	J	BE	5.5L	J	BE
COBALT	50.0U	J	Ε	50.0U	J	E	50.0U	J "	E	50.0U	J	E	50.0U	ij	E	50.0∪	J	É	50.0U	Ĵ	E
COPPER	25.0U	j	Ε	1.9L	J	BE	25.0U	J	Ė	25.0U	J	Ε	25.0U	J	E	25.0U	J	Ε	. 25.0U	J	Ε
IRON	100U		1.7.	: 100U			100U			67.0L	J	В	100U			100U			38.3L	J	В
LEAD .	10.0U	J	Ε	10.0U	J	E	10.0U	J	E	10.0U	J	E	10.0U	J	E	10.0U	J	Ε	10.0U	J	Ε
MAGNESIUM	39900			51500			54600			52400			36500			69400	a m 16 dan		65200		<u> </u>
MANGANESE	15.0U	J	CE	15.0U	J	E	15.0U	J	Ε	145	J	Ε	44.0	J	E	15.0U	J	Ε	15.0U	j	Е
NICKEL	40.0U	J	Ē	40.0U	J	E	40.0U	Ĵ	E	40.0U	j	E	40.0U	J	E	40.0U	j	E	40.0U	J	Ε
POTASSIUM	2820L	J	BD	4790L	J	BD	4920L	j	BD	4720L	J	BD	3600L	J	BD	5740	J	D	4430L	J	BD
SELENIUM	35.0U	J	E	63.2	J	E	10.8L	J	BE ·	10.1L	J	BE	20:9L	J	BE	17.8L	J	BE	12.7L	ل	BE
SILICON	16800			12800			13900			13200			9790			12900			14800		
SILVER	10.00	R-	ΆE	10.0U	R	ΑE	10.0U	R	ΑE	10.0U	Ŕ	ΑE	10.0U	R	AE	10.0U	R	ΑE	10.0U	R	ΑE
SODIUM	72600			131000			109000			115000			59400			146000			165000		
THALLIUM	25.0U	j	÷Ε	, 10.2L	J	BE	- 4.9L	J	BE	8.0L		BE	7.7L	J	BE	13.2L	J	BÉ	13.7L	J	BE
VANADIUM	3.0L	J	BE	50.0U	J	E	50.0U	J	Е	50.0U	J	E	1.7L	J	BÉ	50.0U	J	E	50.0U	J	E
ZINC	60.0Û	J	į́Ε	60.0U	J	E	60.0∪	J	Ë	60.0Ú	J	E	60.0U	ું J √	E÷	60.0U	ِيْنِ لِي _{َّ} اِلْ	ુ E્ર	60.0U	" "j '_	E.

Val - Validity. Refer to Data Qualifiers in Table 1B.

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample CRQL - Contract Required Quantitation Limit

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

ANALYTICAL RESULTS

Table 1A

Case No.: 32989

SDG No.: MY1C21

Site: OMEGA RECOVERY SERV. OU2 Lab: CEIMIC CORPORATION (CEIMIC)

Reviewer: Stan Kott, ESAT/LDC

Date: June 29, 2006

QUALIFIED DATA
Concentration in ug/L

Analysis Type: Low Concentration Groundwater Samples

For Dissolved Metals By ICP-AES

Station Location :	33			34									T								
	MY1C36			MY1C37			MDL			CRQL											
Collection Date :	6/24/2004			6/24/2004																	
																			•		
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	200U			200U		С	44.2			200											
ANTIMONY	60.0U	į j	E	60.0Ū	J	É	10.0		2	60.0		3.25.	1	A STATE OF THE STA			1	1 450 175			
ARSENIC	10.0U	J	Ε	8.8L	J	BE	2.6			10.0				l							
BARIUM	40.8L	٠Ĵ	BE	60.5L	J	BE	0.78		8	200						-3					
BERYLLIUM	5.0U	J	Ε	5.0U	J	Ε	0.20			5.0									1		1.
BORON	439L	. J.	В	287L	J	В	52.8			1000						malam Co				A mest comm	
CADMIUM	5.0U	J	, E	5.0U	J	Ε	0.48			5.0											1
CALCIUM	125000			170000			77.4			5000				<u> </u>							
CHROMIUM	1.1L	J	BE	24.4	J	E	0.87			10.0							44.7530				
COBALT	50.0U	J	E,	50.0∪		Ε.	1.9			50.0	d a		;		<u>.</u>				Clauda.		
COPPER	25.0U	J	E	6.0L	J	BE	1.1	,		25.0		a contambers	and a second was	e ne som drangen		******	,		- many nage in .	,	
IRON	100U			7740			32.2			100				-							
LEAD	10.0U	J	E	10.0U	J	E	4.4	د. سد سما		10.0						atom manage to			t aprillation to the section for a		
MAGNESIUM	39200			49300			28.2			5000		ha san a mar sancasa						<u> </u>			
MANGANESE	26.3	J	E	422	J	E	2.0			15.0					and the		week, 1.02,10	general project			
NICKEL	2.3L	J =	BE	16.4L	J	BE	1.8		, ·/	40.0	. :: 1 - 1 - 2 - 1				4-14-7		marca farman				7.7.7.
POTASSIUM	2590L	. J	BD	15500	J	D	54.8		,_,	5000			to company and	~~~~						-، سەمسىپ،،	
SELENIUM	35.0U	<u>. J</u>	E	. 35.0U	J_	É	.5.3			35.0			<u> </u>				<u> </u>		<u> </u>	30	
SILICON	15900			15700	magazini i	,	67.3		.51	200	ware repair	, 727		चन्द्र ्		marrows at the co	a a sa apopula		و بموجود	7.	
SILVER	10.0∪	R	AE	10.0∪	R	ÁΕ	2.5	edi. Antare e e	عندند ،	10.0	A 11.76						3		ار خور د ده د سینم د	أحدث	
SODIUM	153000	~; .~		106000			60.9	**********		5000											
THALLIUM	* 8.2L	<u></u>	BE	. 25.0U	_ J	E	3.5			25.0			:			1 pr 	2			·	
VANADIUM	5.3L	J	BE	50.0U	J	E	1.5		n says an s	50.0	5-4	****			18790119934	cape to the		wind a		,	ļ
ZINC	60.0U	. J •	E	35.6L	J	∌BE	15.6		Ъ.	60.0 S			19.5	.TV2	See No.	ār ir	7.5	i vec		1	r , \leq

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

 ${\sf FB}$ - ${\sf Field}$ Blank, ${\sf EB}$ - ${\sf Equipment}$ Blank, ${\sf TB}$ - ${\sf Trip}$ Blank, ${\sf BG}$ - ${\sf Background}$ Sample

CRQL - Contract Required Quantitation Limit

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared in accordance with the document *USEPA* Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

SDG Narrative

Laboratory Name: Ceimic Corporation

Case No.: 32989 SDG No.: MY1C21 Contract: 68W02063

- Modification Tracking Number: 1103.0

Geimic Project No.: 040598

The following ILM05.3 (ICP-AES/MS) sixteen groundwater samples were received at CEIMIC Corporation on June 24 and 25, 2004:

EPA ID	Ceimic ID
MYIC26	040598-01
MY1C27	040598-02
MYIC28	040598-03
MY1C30	040598-04
MYIC31	040598-05
MYIC32	040598-06
MY1C33	040598-07
MY1C21	040598-08
MYIC22	040598-09
MY1C23	040598-10
MY1C24	040598-11
MYIC25	040598-12
MY1C34	. 040598-13
MY1C34	040598-13
MY1C34	040598-13
MYIC35	040598-14
MY1C36	040598-15
MYIC37	040598-16

Comments on Data Package

The samples in this SDG for Case 32989 were received for Total Metals analysis by ICP-MS; Total Aluminum, Calcium, Iron, Magnesium, Sodium, Potassium, Boron, and Silicon analysis by ICP-AES. Total Mercury analysis by CVAA, and Total Cyanide analysis by automated spectrophotometry. This SDG reports only the results of the ICP-AES analysis.

SDG MY1C22 reports the ICP-MS analysis of these samples; however, due to suspected matrix interferences and carryovers, many non-compliances exist. After consultation with Steve Remaley, the CLP Project Officer at EPA Region IX, the ICP-AES analysis in this SDG (MY1C21) will report all ICP-MS target analytes in addition to the eight requested analytes listed above. The ICP-MS analysis is still reported as scheduled for SDG MY1C22.

The above samples were digested in accordance with the Inorganic Statement of Work (SOW) ILM05.3, with modifications as listed in the Request for Quote for Modified Analysis with Tracking Number 1103.0. A copy of the modifications is included immediately after this SDG Narrative.

When ICP-AES raw data has been reprocessed in an SDG, the words "Reprocessed on" followed by the date and time of reprocessing will sometimes be printed in the header of each standard and sample raw data report. The word "Reprocessed" is used when the original sequence data is regenerated after it was collected and processed with incorrect information (such as sample information, standard nonenclature) or settings (such as background correction, internal standard, dilution factor, QC concentration, wrong IEC table, etc.)

QA/QC Samples:

Matrix spike and duplicate analysis – as well as ICP serial dilution – were performed on sample MY1C34 as indicated on the Traffic Report / Chain of Custody. A post-digestion spike was not required for this SDG. Only those elements originally requested for ICP-AES analysis – Al, Ca, Fe, Mg, K, Na, B, Si – are included in the matrix spike analysis.

Observations:

A "U" flag in the C column on the sample result forms (Form IA-IN) indicates that the concentration of that analyte in the sample is undetected at the experimentally-determined method detection limit (MDL). If analytes are detected at concentrations between the Contract Required Quantitation Limit (CRQL) and the MDL, a "J" flag is shown in the C column on the Form IA-IN.

The raw data for the MDL study of Boron and Silicon is located in SDG MY1C04.

The "N" and "" qualifiers do not apply to this SDG. The "E" qualifier applies to Potassium for high concentration difference between sample MY1C34 and its serial dilution. Silicon is detected in all samples in this SDG at concentrations exceeding the experimentally-determined linear range concentration (10,000 ug/L) of the ICP-AES instrument. The sample digestates were reanalyzed at a dilution; these reanalyses are denoted by "D" qualifier on the Form IA-IN.

All target analytes for this SDG are monitored and reported on Form IIB-IN for the CRQL Check (CRI) standards, although seven elements (Al, Ba, Ca, Fe, Mg, Na, and K) do not require monitoring.

Due to limitations in the reporting software used for this SDG, a separate Form XIII-IN is included for the analytes Boron and Silicon.

Deviations from Contract:

None other than those described in the Modified Analysis and those prescribed by Mr. Remaley.

End of SDG Narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Ryan Montalbano

Supervisor, Inorganic Laboratories

07/15/2004

Date